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Knotting probability of a shaken ball-chain
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We study the formation of knots on a macroscopic ball chain, which is shaken on a horizontal plate at 12
times the acceleration of gravity. We find that above a certain critical length, the knotting probability is
independent of chain length, while the time to shake out a knot increases rapidly with chain length. The
probability of finding a knot after a certain time is the result of the balance of these two processes. In particular,
the knotting probability tends to a constant for long chains.
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I. INTRODUCTION

Knots are prevalent on most cables, chains, and strings
being used in everyday life or technology. Most remarkably,
knots appear to form spontaneously, as soon as strings are
shaken, transported, or handled in any way, and thus are an
unavoidable by-product of their use. For example, Ref. [1]
describes the dynamics of a ball chain that is suspended from
an oscillating support. As soon as the chain dynamics be-
comes chaotic, the chain forms knots of various kinds. Yet in
spite of a considerable amount of work on the importance of
knots on the molecular scale [2,3], we are not aware of any
systematic study into the origin of the prevalence of knots on
macroscopic chains.

In this paper we present model experiments on shaken
ball chains that quantify the tendency for knot formation as a
function of chain length. By considering both knotting and
unknotting events, we present a simple theory that explains
the probability for the formation of knots after the chain has
been shaken for a given amount of time. After the experi-
ment, the ends of the chain lie flat on the plate, and there is
a unique way to join the ends to form a closed curve. If this
curve is topologically equivalent to a closed loop or “un-
knot” [4] there is no knot, otherwise we call the chain knot-
ted. We made no distinction between different kinds of knots,
however, the simple trefoil knot [4] was by far the most
common.

Of course, it is precisely the topological stability of knots
that lies at the root of the phenomenon: once a knot is cre-
ated, it cannot disappear, except when it falls out at the end
of the chain. Using a setup very similar to ours, the pioneer-
ing study [5] investigated the lifetime of a simple trefoil knot
that was placed in the middle of the chain at the beginning of
the experiment. The mean lifetime 7 of the knot was found to
increase rapidly with chain length

7=13(N=Np)*D, (1)

where N is the number of balls on a chain, Ny~ 15 the size of
a knot, and D a hopping rate. The knot was modeled by the
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three points of intersection of the chain, which perform
random walks. From this assumption the constant
73=0.056213, as well as the entire distribution of lifetimes,
was calculated. The experimentally determined hopping rate
of D=11+1 s~! was found to be close to the driving fre-
quency of f=13 Hz; however, it has not been investigated
systematically what sets this time scale.

In Fig. 1 we present a sketch of our experimental setup. A
stiff solid plate, 50 cm in diameter, is vibrated vertically by
an electrodynamic shaker. The plate’s weight of 4 kg is suf-
ficiently large for the chains to have little effect on the mo-
tion of the plate. The plate is attached to a metal block
mounted on a spider spring, to support the weight of the
plate and to reduce lateral motion. The shaker is controlled
by a computer, with an accelerometer providing feedback to
make sure the plate motion is close to sinusoidal. The driving
frequency f=21 Hz is dictated by the requirement of operat-
ing close to resonance; the dimensionless acceleration is
I'=Aw?/g=12+0.2 as recorded by the accelerometer. Here A
is the amplitude, w=27f the angular frequency, and g the
acceleration of gravity. The top of the plate was machined to
have a very shallow parabolic profile, of 5 mm depth at the
center of the plate. This amount of confinement was enough
to always keep the chains near the center, without them ever
feeling the edge of the plate. A digital camera was mounted
above the plate, capable of taking up to 20 frames per sec-
ond.

Ball chains are an excellent model system to study knot
formation [5], in that they have little stiffness that would
resist the formation of loops, yet considerable friction be-
tween the beads keeps knots from opening too easily. All our
chains were cut from a single sample that had a bead diam-
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FIG. 1. Sketch of the experimental setup.
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FIG. 2. Probability for knotting after 30 s. Error bars are calcu-
lated from the variance of a binomial distribution. The full line is
based on Eq. (3) below.

eter of 2R,.,q=2.1+0.05 mm, with connecting rods that al-
lowed for a maximum interbead spacing of 2.1+0.05 mm
=2Ry.aq» SOmewhat greater than that of the earlier study
(0.8Ryeaq) [5]. It seems reasonable to take the number of
beads as the fundamental unit of length, since they offer the
greatest resistance as two parts of the chain slide across each
other.

II. EXPERIMENTAL RESULTS

Our main aim is to understand and to quantify the ten-
dency for knots to form spontaneously once excited by shak-
ing. To that end we shake chains of lengths between N=10
and 500 by dropping them onto the vibrating plate, and in-
specting them for knots after 30 s. Each experiment was re-
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FIG. 3. The number of knots on chains of length N=73 (a), and
N=144 (b), as a function of time.
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TABLE 1. Some statistics of knotting and unknotting for two
chains N=73 and 144. The last two lines report the mean radius of
gyration.

Chain length (N) 73 144
Chain length (cm) 30 60
Mean knot lifetime (s) 135 102+29
7 (s) [5] 17 85
Mean knotting time (s) 219+12 219+16
(R,) (cm) (no knot) 7.18+0.03 11.58+0.06
(R,) (cm) (knot) 6.39+0.12 11.00+0.09

peated 80 times, and the resulting probability of knotting
calculated, as shown in Fig. 2. No knotting was ever ob-
served for chains shorter than N,;,=38. The probability then
rises sharply to reach a plateau value of about P=0.26, al-
though we cannot exclude the possibility of a slight uptrend
for the longest chains.

We expect that Fig. 2 can be understood from the inter-
play of knotting and unknotting events. To investigate this
further, we followed the evolution of chains whose length lay
in the transition region (N=73 and N=144) continuously for
two hours. By taking 10 frames at 20 fps we were able to
decide unambiguously whether a knot was present. This pro-
cess was repeated every 5.5 s, which permitted us to com-
press and store the video images. The entire sequence was
then examined manually for the number of knots, separated
by a length of chain. As shown in Fig. 3, the presence of two
knots is still quite unlikely for the chain lengths shown here.
In calculating the statistics of knotting and unknotting, knots
were treated as independent.

Some statistics as extracted from Fig. 3 are collected in
Table 1. As expected, the lifetime of a knot increases consid-
erably with length. Comparing to the results of Ref. [5], there
is remarkably good agreement, using Eq. (1) with the same
value of the hopping rate D as in the original paper. This is
perhaps surprising, considering the differences in chain prop-
erties, driving conditions and, in particular, in the way knots
are introduced. In Ref. [5], knots were introduced by hand in
the center of the chain, while spontaneous knots tend to
originate from the end of the chain, see Fig. 4 below. Note
that our driving frequency was also somewhat larger than
that of Ref. [5]. There still is considerable statistical uncer-
tainty in our data, so more subtle dependencies on knot prop-
erties and their position may still to be discovered, when
more data are taken.

However, the most remarkable observation is that the
mean knotting time for the two chains is the same, although

FIG. 4. Examples of knotting events, taking place at the end of
the chain.
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FIG. 5. Cumulative number K of knotting events occurring after
a shaking time of ¢ or smaller.
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the chain lengths are quite different. This observation makes
sense, since knots are produced by the ends of the chain,
which have sufficient freedom of motion to wrap around the
rest of the chain, as illustrated by the three knotting events
shown in Fig. 4. Of course, there is a certain minimum
length that is required, which according to Fig. 2 is
Npin=38, about twice the minimum size N, of a knot. Our
data for N=73 indicate that the knotting rate rises very
quickly to a plateau value in the chain length. Thus we will
assume that the knotting rate is actually constant once N is
larger than N;,.

Note that the observed independence of knotting probabil-
ity of chain length is in marked contrast to the equilibrium
behavior of polymers, as modeled by self-avoiding random
walks. Namely, “all except exponentially few sufficiently
long self-avoiding polygons on the simple cubic lattice con-
tain a knot” [6]. In the present nonequilibrium situation, dif-
ferent random walk configurations are far from equally prob-
able, as the motion of the chain is constrained by its position
on the plate, and by the different mechanical modes that may
be excited on the chain. Of course, this points to the peren-
nial problem of nonequilibrium systems, that statistical prop-
erties may be significantly dependent on driving conditions,
an issue still to be explored in more detail for the questions
addressed in the present paper.

As discussed below, the probabilities reported in Fig. 2
may depend significantly on the manner each experiment,
lasting only 30 s, is started. In Fig. 5, we therefore report
knotting probabilities for an experiment that ran continu-
ously for two hours. We plotted the cumulative distribution
of knotting times for the shorter chain, as obtained from the
data of Fig. 3. The result is very well fitted by an exponential
distribution, using the mean knotting time 7, from Table I.
This is the distribution we will assume below for both knot-
ting and unknotting events, although the unknotting distribu-
tion is more complicated [5].

As a final result, we report the mean radius of gyration
(R,) obtained by taking the spatial average of all beads of a
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chain, which was done by image analysis using MATLAB. We
then performed a temporal average, which we did separately
for the knotted and the unknotted chain. As expected, (R,) is
slightly larger for the unknotted state, but temporal fluctua-
tions are prohibitively large to make this a useful indicator of
knottedness, as we had hoped originally. The radius of gyra-
tion of course increases with chain length, but at a slower
rate than the linear extension of the chain.

III. THEORY AND DISCUSSION

Armed with the above observations, we can attempt a
simple theory for the probability of knots. We adopt a two-
state description, in which the chain is either in an unknotted
or in a knotted state, the probability of the latter being P.
This can easily be generalized to allow for an arbitrary num-
ber of knots. Events are completely uncorrelated in time, so
the distribution of (say) unknotting times is assumed expo-
nential, while reality is more complicated [5]. Now if the
average unknotting time is 7 as before, and the knotting time
7, we obtain the following rate equation for P:

P=(1-P)/1, - Plr. )

The first term is the rate of knotting events, which only take
place if there is no knot. Conversely, the second term de-
scribes the rate of unknotting. Equation (2) is solved very
simply with initial condition P(0)=0, giving

P(t)= {1 —exp[- (7" + 7 )i} 3)

1+7/1
for the probability after a time 7. Now all that is needed are
the values of 7and 7, as function of chain length.
For 7 we take Eq. (1) as found in Ref. [5], which accord-
ing to Table I is consistent with our data. For the knotting
time we take

T = Sz
LAY N> N

As discussed above, this is based on the idea that knots are
formed at the end of the chain. Once a length N,;,, which
gives sufficient freedom for knots to form, is exceeded, the
rest of the chain no longer matters. By the same argument we
also believe that the mean configuration of the chain, as mea-
sured qualitatively by the radius of gyration, is not of funda-
mental img)ortance to calculate knotting probabilities. The
constant T,:at) has to be determined empirically.

For long chain lengths, 7 becomes large and Eq. (3) re-
duces to P=1-exp(~t/ Tfjal)), independent of chain length, as
expected. From the asymptotic value of P=0.26, taken from
Fig. 2, we deduce 7,=100 s. The slight uptrend, visible in
Fig. 2, could be indicative of an increasing knotting probabil-
ity for very long chains, but our data are not sufficiently
accurate to draw any firm conclusions. For simplicity, we
also assume that N, is essentially the same quantity as N,
as identified by Ref. [5], the length for which a knot falls out
immediately. The result (3) is plotted as the solid line in Fig.
2, using Egs. (1) and (4). The agreement is quite good, con-

(4)
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sidering there is only one adjustable parameter.

Ideally, even this adjustment could have been avoided, as
7, could be taken directly from Table I. However, this gives
about twice the value of 7;, which would lead to a significant
disagreement in the asymptote of P. One simplifying as-
sumption of our model was to disregard the distribution of
knotting times. However, we suspect that the main reason for
this disagreement lies in the difficulty of preparing the chain
in an unbiased fashion. At the beginning the ends of the
chain are excited to a higher degree, leading to a significant
increase of the knotting probability.

There is a significant body of work that remains to be
done. First, one would like to check our theory in greater
detail, by taking long time traces for a greater variety of
chain lengths, and measuring knotting probabilities for peri-
ods other than 30 s. Secondly, one would like to obtain a
better description of the dynamics of the chain, and how it
leads to knotting events. In particular, what sets the time
scale for 7 and 7,7 This could be addressed in part by chang-
ing the driving characteristics of the plate, as well as the
amount of confinement of the chain. Preliminary experi-
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ments, performed in a container with side walls, have in fact
shown that boundary effects play a significant role for the
knotting probability. Finally, we have not considered the
probability for different types of knots, which are observed if
the knotting time increases.
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